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Abstract
The spectral properties and phase diagram of the exactly integrable spin-1
quantum chain introduced by Alcaraz and Bariev are presented. The
model has a U(1) symmetry and its integrability is associated with an
unknown R-matrix whose dependence on the spectral parameters is not
of a different form. The associated Bethe ansatz equations that fix the
eigenspectra are distinct from those associated with other known integrable
spin models. The model has a free parameter tp. We show that at the
special point tp = 1, the model acquires an extra U(1) symmetry and
reduces to the deformed SU(3) Perk–Schultz model at a special value of
its anisotropy q = exp(i2π/3) and in the presence of an external magnetic
field. Our analysis is carried out either by solving the associated Bethe
ansatz equations or by direct diagonalization of the quantum Hamiltonian
for small lattice sizes. The phase diagram is calculated by exploring the
consequences of conformal invariance on the finite-size corrections of the
Hamiltonian eigenspectrum. The model exhibits a critical phase ruled by
the c = 1 conformal field theory separated from a massive phase by first-order
phase transitions.

PACS numbers: 75.10.Pq, 02.30.Ik, 05.50.+q, 05.30.−d

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The anisotropic spin-1/2 Heisenberg model, or XXZ quantum chain, and the 6-vertex model
are considered as paradigm of exact integrability in statistical mechanics [1]. In the XXZ
quantum chain the z-component of the total magnetization is a good quantum number (U(1)

symmetry). Its simplest integrable generalizations that keep the U(1) symmetry are spin-1
quantum chains. Models on this class are the Fateev–Zamolodchikov model [2], the Izergin–
Korepin model [3], the supersymmetric OSP(1/2) model [4] and the biquadratic model [5].
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The integrability of these models is a consequence of the existence of a known associated
R-matrix satisfying the Yang–Baxter equation. The associated R-matrix for these models are
regular, i.e. depends only on the difference of the spectral parameters.

A new exactly integrable spin-1 quantum chain was derived by using the coordinate Bethe
ansatz [6] or a matrix product ansatz [7]. The derivation of the integrable model through these
last approaches does not depend on the knowledge of the associated R-matrix. Distinct from
the other integrable [2–5] and nonintegrable [8] spin-1 models, whose physical properties are
well studied, almost no physical information is known for this new quantum chain, besides its
exact integrability. The unknown associated R-matrix is not regular [6] since it does not satisfy
the Reshetikihin criterion [9]. The Bethe ansatz equations (BAE) that fix the eigenenergies
are also quite distinct from the corresponding equations of other spin-1 integrable quantum
chains.

In this paper we are going to present an extensive analytical and numerical analysis of
the eigenspectra properties of this new spin-1 quantum chain. Based on solutions of the
associated BAE, whenever it is possible, and diagonalizations of the quantum Hamiltonian on
small lattices (L = 2–24), we are able to predict some of its critical properties.

The paper is organized as follows. In section 2 we present the model and the BAE that
fix the eigenspectra. The model has a U(1) symmetry and is exactly integrable for any value
of a free parameter tp. We show that for the special value tp = 1, the model is related to the
deformed SU(3) Perk–Schultz model with the deformation parameter q = exp(i2π/3) [10]
in the presence of an external magnetic field. In section 3 we analyze the eigenspectra of
the quantum chain in several regions with distinct values of the free parameter tp. Based on
conformal invariance predictions, the critical properties of the model are calculated. Finally
in section 4 we summarize our results and present our conclusions.

2. The model

Instead of presenting the quantum Hamiltonian in terms of spin-1 SU(2) matrices (Sx, Sy, Sz),
it is more convenient to present it in terms of the 3 × 3 Weyl matrices El,m (l, m = 0, 1, 2),
with elements El,m)i,j = δl,iδm,j . At each lattice site i we may have a zero particle (ni = 0),
one particle (ni = 1) or two particles (ni = 2) or equivalently Sz

i = −1, Sz
i = 0 and Sz

i = 1,
respectively. The dynamics of these particles, in a periodic chain with L sites, is described by
the Hamiltonian

H(tp, h) = −
L∑

j=1

2∑
α,β,γ,μ=0

�α,β
γ,μE

γ,α

j E
μ,β

j+1 − h

L∑
j=1

2∑
α=1

αE
α,α
j , (1)

where

�
1,0
0,1 = �

0,1
1,0 = �

2,1
1,2 = �

1,2
2,1 = −1, �

0,2
2,0 = �

2,0
0,2 = −tp,

�
1,1
0,2 = �

0,2
1,1 = e−iπ/3

√
t2
p − 1, �

1,1
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√
t2
p − 1

(2)

are the hopping parameters (off diagonal) and the static terms (diagonal) are given by
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The parameter tp is free and h plays the role of a magnetic field in the z-direction (z-magnetic
field) or a chemical potential controlling the magnetization or the number of particles in the
ground state, respectively.

The Hamiltonian (1) is non-Hermitian. It is interesting to observe that its non-Hermiticity
is not only due to the presence of complex matrix elements in the diagonal (see (3)) (as occurs in
the quantum deformed SUq(N) models) but also due to the presence of complex nondiagonal
elements (see (2)). The Hamiltonian (1) has a U(1) symmetry due to its commutation with
the total density ρ of particles

ρ = n

L
, n =

L∑
j=1

nj , nj = Sz
j + 1 =

2∑
α=1

αE
α,α
j . (4)

As a consequence its associated eigenvector space can be separated into disjoint sectors labeled
by the the total number of particles n (or density ρ) or equivalently by its magnetization.

The quantum chain (1) corresponds to one of the exactly integrable models introduced in
[6]1. It is given by the choice ε = 1 in equation (15) of [6]. As compared with the original
presentation of the model, we also added a harmless z-magnetic field so that the ground state of
(1) at h = 0 has, for any value of tp, a total density ρ = 1 or equivalently zero magnetization.
The Hamiltonian (1) is exactly integrable for arbitrary values of the parameter tp and magnetic
field h.

At tp = 1 the non-diagonal couplings �
1,1
2,0 = �

2,0
1,1 = �

1,1
0,2 = �

0,2
1,1 = 0 and the

model has an additional U(1) symmetry. The number of sites with single and double
occupancy are now conserved separately. The parameter tp can be interpreted as an anisotropy
parameter, tp = 1 being the isotropic point. At this isotropic point, apart from a contribution

i
√

3
2

∑L
i=1

(
E

0,0
i − E

0,0
i+1

)
that vanishes in the periodic chain, the Hamiltonian, with h = 0, is

given by

H(tp = 1, h = 0) = HPS

(
i
2π

3

)
− 3

2

L∑
j=1

E
1,1
j +

L

2
, (5)

where

HPS(γ ) =
L∑

j=1

2∑
α=0

{
cosh γE

α,α
i E

α,α
i+1

+
2∑

β=α+1

[
sinh γ

(
E

β,β

i E
α,α
i+1 − E

α,α
i E

β,β

i+1

)
+ E

α,β

i E
β,α

i+1 + E
β,α

i E
α,β

i+1

]}
(6)

is the deformed spin-1 SU(3) Perk–Schultz model [10] at the special value of the deformation
parameter q = eγ , γ = i2π/3. This model is also known as the anisotropic SU(3)

Sutherland model [11]. It is important to stress that the related Perk–Schultz Hamiltonian is
the ferromagnetic one (signal +) in the presence of a special magnetic field (value h1 = 3/2,
h2 = 0) favoring single occupied sites. A simple calculation shows us that the ground state for
the related Perk–Schultz model occurs in the sector with total density ρ = 1. It corresponds
to the trivial state |11 · · · 1〉 where all the sites are single occupied. The model (1), for
tp �= 1, can then be considered as the spin-1 anisotropic Perk–Schultz model at q = ei2π/3

1 There is a misprint in equations (1) and (15) [6]. We should have in (1) uE22
j E00

j+1 the term u(E22
j E00

j+1 + E00
j E22

j+1)/2

and in equation (15) u= ∈ tp + (2 − ∈)t−1
p .
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with an additional parameter that breaks partially its symmetry. For arbitrary values of tp, the
eigenenergies and momentum are given by [6]

E = −n

(
1

2tp
+ h

)
+ 2

n∑
j=1

cos kj , P =
n∑

j=1

kj , (7)

where {kj = k(λj ); j = 1, . . . , n} are the roots obtained from the BAE

eikj L = −
n∏

l=1

sinh(λj − λl − i2π/3)

sinh(λj − λl + i2π/3)
, j = 1, . . . , n, (8)

with

eikj =
sinh λj − i

√
3t2

p +
(
4t2

p − 1
)

sinh2 λj

tp(sinh λj + i
√

3 cosh λj )
. (9)

As we see from (9), the left-hand side of the BAE (8) is quite distinct from the corresponding
equations for other exactly integrable quantum chains. In order to consider the bulk limit
(L → ∞), it is then necessary to study these equations for small lattice sizes. These studies,
as we are going to see in the next section, will give us educated guesses for the topology of
the roots {λj } related to the low-lying eigenvalues.

Before closing this section it is interesting to consider the BAE (8)–(9) at tp = 1. In this
case they are given by[

sinh(λj − iπ/3)

sinh(λj + iπ/3)

]L

= −
n∏

l=1

sinh(λj − λl − i2π/3)

sinh(λj − λl + i2π/3)
, j = 1, . . . , n. (10)

These equations coincide with the BAE of the XXZ chain [1] at the special value of its
anisotropy � = −(q + 1/q) = 1/2 (q = ei2π/3). However, in the XXZ chain, the density
of particles is restricted to 0 � ρ � 1 while in the model (1) 0 � ρ � 2. Although the
completeness of the Bethe ansatz solutions is always a complicated problem, we expect that
at tp = 1 the solution obtained from (10) is not complete. Due to the additional symmetry
(conservation of the number of pairs of particles) we should start again the Bethe ansatz [6]
or the matrix product ansatz [7] taking into account this new symmetry. In this case we
obtain the nested BAE of the deformed SU(3) Perk–Schultz model with the deformation
parameter value q = ei2π/3. At this point this last model is special. In [12] several conjectures
about the eigenspectra of this model on its antiferromagnetic regime were made. As is well
known, the eigenspectra of the anisotropic SU(3) Perk–Schultz model contain all the
eigenvalues of the XXZ quantum chain with the same anisotropy. The equivalence (5) then
indicates that the whole eigenspectra of the XXZ with anisotropy � = 1/2 are contained
in the eigenspectra of the Hamiltonian (1) at tp = 1. Moreover, a direct diagonalization of
(1), with tp = 1 and h = 0, shows that for small even lattice sizes (L � 12) the low-lying
eigenvectors, for densities ρ < 1, coincide with those of the XXZ chain at the anisotropy
� = 1/2. This means that there is no double occupancy of particles on these eigenstates. This
can be understood from (5) due to the presence of the magnetic field favoring single occupied
sites.

3. Eigenspectra calculations

In this paper we restrict ourselves to the cases where the parameter tp is real and positive.
The eigenvalues of H(tp, h) are the same as those of −H(−tp,−h). The Hamiltonian (1)
although having a real trace is non-Hermitian. The exact eigenspectra calculations for lattice
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sizes L � 12 show that most of the eigenenergies are real. All the low-lying eigenvalues are
real numbers. Imaginary eigenvalues, appearing in complex-conjugate pairs, occur only for
high excited states in the eigenspectrum. We also verify that when h = 0 the ground state of
(1) belongs, for general values of tp, to the sector with density ρ = 1. Moreover, for h = 0, the
low-lying excited states in the sectors with densities ρ = 1 + m

L
and ρ = 1 − m

L
(m = 1, 2, . . .)

are degenerated. This degeneracy is not valid for higher excited states since the model (1) at
h = 0 does not have the symmetry under the conjugation of particles: 0 ↔ 2, 1 ↔ 1.

At tp = 1, where the model (1) recovers the deformed SUq(3) Perk–Schultz model at
q = ei2π/3 (see (6)), the model is massive (nonzero gap). Our numerical results indicate
the same massive behavior for all values of tp � 0 as long as h = 0. As h decreases
(negative values), it reaches the critical field hc(tp). For h � hc(tp) the ground-state changes
continuously its density of particles ρ = ρ(h) < 1. We do expect, in the plane (tp, ρ), a phase
diagram with massless (critical) behavior for ρ < 1. In this critical regime, the long-distance
fluctuations should be ruled by an underlying conformal invariant field theory. The conformal
central charge c of the continuum theory can be estimated from the finite-size corrections of
the ground-state energy E0(L, tp, ρ) of the finite-size L chain [13], i.e.

E0(L, tp, ρ)

L
= e∞ − πvsc

L2
+ o(L−2), (11)

where e∞ is the bulk limit of the ground-state energy per site and vs = vs(tp, ρ) is the sound
velocity that can be inferred from the energy–momentum dispersion relations. Moreover, for
each primary operator ��,�̄, with dimension x� = �+�̄ and spin s� = �−�̄ in the operator
algebra of the underlying conformal theory, there exists an infinite tower of eigenstates whose
energies E�

m,m′(L) and momentum P �
m,m′ behave asymptotically as [14]

E�
m,m′(L) = E0(L) +

2π

L
vs(x� + m + m′) + o(L−1),

P �
m,m′ = 2π

L
(s� + m − m′),

(12)

with m,m′ = 0, 1, 2, . . ..
Our spectral analysis of the Hamiltonian (1) was done by solving numerically the BAE

(8)–(9) using a Newton-type method, whenever it was possible. Since there is no numerical
method that warranties the solution for the nonlinear equation (8), the success in finding the
solutions depends very much on the ability to provide educated guesses for the approximated
values. In the cases where we were not able to obtain the solutions of the BAE, our analyses
were based on direct numerical diagonalizations, or by using approximated methods like the
power method. On these last cases our analyses were limited for lattice sizes up to L = 24
sites.

According to the different topologies of roots of the BAE (8)–(9) we divide the plane
(tp, ρ) into five regions (see figure 1).

In general, the roots {λj } of (8) are complex numbers. The numerical analysis, based on
direct solutions of (8), as compared with brute force diagonalizations of the quantum chains
shows that in regions 1 and 2 (see figure 1) the roots {λj } corresponding to the low-lying
eigenvalues are all real numbers. For these cases, the right-hand side of (8) is unimodular.
The roots are then constrained (or not) on a finite real interval, depending on the values of tp.
If tp < 1/2 (region 1) the real roots are constrained on the interval

−(tp) < λj < (tp), (13)

where

(tp) = 1

2
cosh−1

(
2t2

p + 1

1 − 4t2
p

)
. (14)
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Figure 1. Phase diagram of the quantum Hamiltonian (1)–(3). In regions 1 and 2 the ground state
is described by real roots of the BAE. In the other regions the ground state, besides real roots, also
contains complex ones. Regions 1, 2, 3 and 5 are critical and governed by the c = 1 Coulomb
gas conformal field theory. Region 4 is characterized by several crossing of the eigenenergies
producing an oscillatory behavior in the finite energy gaps and momentum. The lines separating
regions 1 and 5 and regions 2 and 3 are obtained by solving (19)–(21) and (23). A schematic
line (heavy line) where we expect a first-order phase transition, separating regions 3 and 4, is also
shown.

For tp � 1/2 (region 2) these roots are unconstrained. For these real roots the BAE (8)–(9)
take the simple from

Lk(λj ) = 2πQ
(n)
j +

n∑
k=1

φ(λj ,−λk), j = 1, . . . , n, (15)

where

k(λ) = θ2(λ) − θ1(λ), φ(λ) = 2 arctan

(
tanh λ√

3

)
,

θ2(λ) = − arctan

⎛
⎝

√
3t2

p +
(
4t2

p − 1
)

sinh2 λ

sinh λ

⎞
⎠ , (16)

θ1(λ) = arctan(
√

3 coth λ),

and Q
(n)
j (j = 1, . . . , n) are integers or odd-half integers, depending on the particular

eigenstate. As before, the eigenenergies and momenta are given by (7).
In order to illustrate we present in table 1 some eigenenergies obtained by solving the

BAE (15) in region 1. We take in (1) the magnetic field h = 0. They are obtained for several
lattice sizes L at tp = 0.2, 0.3 and 0.4 and densities ρ = 0.6, 0.65 and 0.7, respectively.

They are zero (mod. π ) momentum eigenstates with roots {λj } symmetrically distributed
around the origin. The corresponding quantum numbers in (16) are Q

(n)
j = ±(−L

2 + j
)

(j = 1, . . . , n = ρL). The finite-size corrections of the ground-state energies indicate that
in regions 1 and 2 the Hamiltonian (1) is critical and conformally invariant. Relation (11)
gives us an estimate for the conformal anomaly c of the underlying conformal field theory. In

6
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-0.7376

-0.7375

-0.7374

-0.7373

-0.7372

-0.7371

E
0/L

Figure 2. Ground-state energy per site of the Hamiltonian (1) as a function of 1/L2 for tp = 0.2,
ρ = 0.6. We set h = 0 in the figure. This point belongs to region 1 in figure 1.

Table 1. Lowest eigenenergies per site of the Hamiltonian (1) with h = 0 for some values of L, tp
and density of particles ρ. These points belong to region 1 (see figure 1). They are obtained by
solving directly the BAE (15). They last line is the asymptotic value obtained from the solution of
(19)–(22).

L\(tp, ρ) (0.2, 0.6) (0.3, 0.65) (0.4, 0.7)

10 −2.247 455 86 – −1.705 796 04
100 −2.237 266 00 −1.865 550 23 −1.699 909 39
200 −2.237 190 21 −1.865 484 82 −1.696 538 25
1000 −2.237 165 69 −1.865 470 50 −1.696 515 39

Ext. −2.237 164 39 −1.865 465 61 −1.696 240 38

figure 2 we show, as an example, the ground-state energy per site as a function of 1/L2 for the
quantum chain with tp = 0.2, density ρ = 0.6 and h = 0. We clearly see a linear behavior as
predicted by conformal invariance (see (11)). The linear coefficient of the dot line in figure 2
gives us, from (11), an estimate for the product 2πvsc. The sound velocity vs is more difficult
to estimate from numerical solutions of (15)–(16), since it demands the calculation of excited
states with nonzero momenta. The BAE roots in this case are not symmetric. A possible
way to circumvent this problem is to seek for excited zero momentum states related to higher
values of m = m′ in the conformal tower (12) of the identity operator (xφ = 0). Our numerical
analysis indicates that these energies have a configuration of BAE roots where ρL−2 of them
are real and symmetrically distributed around the origin, and the two out-most roots are in the
form λ = ±(a + iπ), with a ∈ 
. There is a difficulty in using this set of eigenlevels. As we
change the lattice size, their relative positions m = m′ in the conformal tower are not fixed.
However, the estimates for the sound velocity obtained by direct diagonalization (L � 24) of
the quantum chain, although with low precision, are enough to indicate the position m = m′

of the eigenlevel in the conformal tower. Using this procedure we computed the conformal
anomaly at several points in regions 1 and 2 (see figure 1) obtaining c = 1.00(1).

7
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Since in regions 1 and 2 the ground state is described by real roots of the BAE, it is not
difficult, in this case, to consider the bulk limit (L → ∞) of the BAE (15)–(16). Following
Baxter [15], we define the variables

xj = Qj

L
= 1

2π

[
k(λj ) − 1

L

ρL∑
l=1

θ(λj − λl)

]
. (17)

When L → ∞, xj → x becomes a continuous variable in the interval xmin < x < xmax

satisfying the integral equation

xj = Qj

L
= 1

2π

[
k(λj ) −

∫ xmax

xmin

φ(λ(x) − λ(y)) dy

]
. (18)

Since for the ground state the {Qj } are equally spaced by the unity, σL(λ) = dx
dλ

will give us,
for L → ∞, the local density of roots σ∞(λ) that satisfies the integral equation

σ∞(λ) = 1

2π

(
dk(λ)

dλ
+

∫ λ0

−λ0

2
√

3σ∞(λ′)
2 cosh(2(λ − λ′)) + 1

dλ′
)

, (19)

where from (16)

dk(λ)

dλ
=

√
3

2 cosh(2λ) + 1

⎛
⎝1 +

√
3 cosh λ√(

4t2
p − 1

)
sinh2 λ + 3t2

p

⎞
⎠ , (20)

and λ0 = λ0(tp, ρ) gives the extreme values of the roots. The total density of particles and the
ground-state energy per site are given by

ρ =
∫ λ0

−λ0

σ∞(λ) dλ, (21)

ε0(tp, ρ, h) = ε0(tp, ρ, 0) − hρ = −ρ

(
1

2tp
+ h

)
+ 2

∫ λ0

−λ0

cos((k(λ))σ∞(λ) dλ, (22)

where h = h(tp, ρ) is the magnetic field that fixes the ground-state energy at the
density ρ.

For tp < 1/2 (region 1), λ0(tp, ρ) is always finite, i.e. λ0(tp, ρ, h) � (tp) (see (14)).
In figure 3 we show the ground-state energy ε0(tp, ρ, h) for several values of tp in region 1
(we set h = 0 in the figure). They are obtained by using in (22) the σ∞(λ) obtained from the
numerical solution of the coupled integral equations (19)–(21). As we see from this figure
these equations give us a maximum total density of particles ρ = ρmax(tp) < 1 for the quantum
chain. At the endpoints of the curves we have λ0 = (tp) (see (14)). Above this density,
which we refer as region 5, some of the BAE roots associated with the ground state of the
quantum chain have complex values. In figure 1 the line separating regions 1 and 5 gives,
for a given tp, the maximum density obtained from (19) to (21). This line was obtained by
solving numerically (19)–(21). In order to compare with the finite-size results, we give in the
last line of table 1 the estimated value of ε0(tp, ρ, h = 0), obtained by solving (19)–(21) for
tp = 0.2, 0.3 and 0.4 with ρ = 0.6, 0.65 and 0.7, respectively.

For tp � 1/2 (region 2), the roots {λj } are not constrained and λ0 = λ0(tp, n) is arbitrary.
The maximum density compatible with only real roots of the BAE for the ground state is
obtained by setting λ0 → ∞ in (19) and (21). In this case we can solve (19)–(21) by using
Fourier transforms. After some long but straightforward calculation, we obtain the maximum
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Figure 3. Ground-state energy per site of the Hamiltonian (1) as a function of the density ρ,
for several values of tp in region 1. In the figure we set h = 0 and the values of tp are shown.
These curves are obtained by solving (19)–(21). For a given value of tp the curves are shown for
ρ < ρmax(tp), with ρmax(tp) given by (23). For ρ > ρmax(tp) there exist complex roots in the
BAE solutions for the ground state and the model is in region 5.

density

ρmax(tp) =
∫ ∞

0

3
√

3

2 cosh(2λ) + 1

⎛
⎝1 +

√
3λ√(

4t2
p − 1

)
sinh2 λ + 3t2

p

⎞
⎠ dλ. (23)

At special values of tp we are able to solve (23) analytically: ρmax(1/2) = 1, ρmax(1) = 1/2,
ρmax(∞) = 1/4. In figure 1 the curve separating region 2 from 3 was obtained from the
numerical evaluation of (23). As occurred in region 5, for ρ > ρmax(tp) (regions 3 and 4), the
BAE solutions giving the ground state contain complex roots besides the real ones.

As in region 1 (see table 1) we also calculated the finite-size corrections for the ground-
state energy in several points of region 2. Using (11) and the same procedure as before our
results indicate that, like region 1, region 2 is also critical and conformal invariant with c = 1.
We then have in both regions (1 and 2) a massless behavior with ground-state energy given
by real roots of the BAE. This critical behavior is quite similar to that of the XXZ quantum
chain in the presence of a magnetic field [16, 17]. We then expect in regions 1 and 2 a
physical behavior described by an underlying c = 1 Coulomb gas conformal field theory. The
anomalous dimensions of operators are given by

xl,m = l2xp + m2/4xp, (24)

with l, m = 0,±1,±2, . . .. The dimensions l2xp are obtained from (12), by considering the
difference between the ground-state energies in the sectors with densities ρ and ρ + l/L. The
dimensions x0,m are calculated by using in (12) the mass gaps associated with eigenstates with
the same density of particles.

The parameter xp = xp(tp, ρ) in regions 1 and 2, which are estimated from the finite-size
corrections of the energy (22), can be calculated analytically. This is done by applying to our
relations (18)–(22) the method used in [16] for the XXZ quantum chain in a magnetic field.
We obtain

xp = (2ξ(λ0))
−2, (25)
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Figure 4. The values of xp(tp, ρ) (see (24)) as a function of ρ for several values of tp in regions 1
and 2. The curves with tp < 1/2 and tp � 1/2 belong to regions 1 and 2 of figure 1, respectively.
The endpoints of the curves are the densities separating regions 1 and 2 from 3 and 5, respectively.
For tp � 1/2 the endpoints of the curves are xp = 1/6 ∼ 0.166 66.

where ξ(λ0) is the dressed charge [18] evaluated at the Fermi surface λ0 of the effective
Coulomb gas. This function satisfies the integral equation

ξ(λ) = 1 +

√
3

π

∫ λ0

−λ0

ξ(λ′)
2 cosh(λ − λ′) + 1

dλ′. (26)

In figure 4 we show, for several values of tp in regions 1 and 2, the dimensions xp = xp(tp, ρ)

obtained by using in (25) the numerical solutions of the coupled integral equations (19), (21)
and (26). We can see from this figure that for any tp, as ρ → 0, xp → 1/4. This can
be understood from the fact that at this limit the interacting potential energy is negligible
when compared with the kinetic energy (hopping terms). We have essentially non-interacting
particles, where xp has the value 1/4. We also see from this figure that for tp < 1/2 (region
1), the limiting value of xp depends on the value of tp. This value is obtained by choosing
λ0 = (tp) in (26), where (tp) is given by (14). In figure 5 we show the limiting values of xp

as a function of tp for tp � 1/2. It varies from xp = 1/4 to xp = 1/6 as tp goes from 0 to 1/2.
Moreover, figure 4 shows that the limiting value is xp = 1/6 for any tp � 1/2. This should be
the case since for any tp � 1/2 the maximum value of λ0 is infinity and consequently (25) and
(26) give us the same result for any value of tp. The exact value xp = 1/6 can be understood
from the relation (see section 2) of the model at tp = 1 and the XXZ chain with anisotropy
� = 1/2. When λ0 → ∞ the density ρ → 1/2. At this density the XXZ has no magnetic
field and its exponent is given by xp = (π − cos−1(−�))/2π = 1/6. These results imply
that, at the line separating regions 1 and 5, xp varies continuously from 1/4 to 1/6 and, in the
line separating regions 2 and 3, it remains fixed to the value 1/6.

In regions 3 and 5 of figure 1 some of the roots of the BAE corresponding to the ground
state have complex values. In fact in some points of these regions we were able, for small
lattice sizes, to solve the BAE for the ground-state energy. We verified that besides real roots
we also have pairs of 2-strings (pair of roots of type λ± = a + ib, with a, b ∈ 
). The
simultaneous appearance of complex roots in the BAE (8) produces numerical instabilities
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Figure 5. The values of xp at the line separating regions 1 and 5 (see figure 1). The exponents
varies from xp = 1/4 to xp = 1/6 ∼ 0.1666, as tp goes from 0 to 1/2.

Table 2. The quantities e∞, vs , c, x+1,0, x−1,0 and x0,1 for the Hamiltonian (1) with density
ρ = 1/2 and some values of tp. The first line (tp = 0.75) corresponds to a point inside region 2
and the second one (tp = 1) to a point at the line separating regions 2 and 3. The remaining lines
correspond to points in region 3 (see figure 1).

tp e∞ vs h c x+1,0 x−1,0 x0,1 1/4x0,1

0.75 −1.119 47 1.4321 −1.5911 1.000 0.168 0.169 1.490 0.168
1.0 −1.049 04 1.2991 −1.5000 0.999 0.167 0.167 1.500 0.167
1.15 −1.022 11 1.2252 −1.4686 0.999 0.170 0.169 1.498 0.167
1.25 −1.007 92 1.1771 −1.4540 1.001 0.169 0.167 1.490 0.168
1.35 −0.995 97 1.1300 −1.4425 1.001 0.169 0.167 1.490 0.168
1.50 −0.9812 1.0596 −1.4295 1.01 0.169 0.167 1.48 0.168

causing the numerical solution of the BAE to become quite difficult task. Due to this difficulty,
instead of solving the BAE (8) we have used the power method to calculate the lower part
of the eigenspectrum. In this case, due to computer limitations, even exploring the U(1) and
translation symmetries of the quantum chain, we are restricted to lattice sizes up to L = 24,
where the largest sector we can calculate the lowest eigenenergy has dimension 5136 935
(L = 24, n = 13). Since we work at a fixed density of particles, the larger number of sites
we can use (and consequently obtain a better precision for our estimates) is at the density
ρ = 1/2.

In table 2 we present some of our estimated values of several quantities that characterize
the critical behavior of the quantum chain (1) inside region 3 (tp = 1.15, 1.15, 1.35 and 1.5).
The calculations were done at density ρ = 1/2. In the first two lines, for comparison, we
also give the results for a point inside region 2 (tp = 0.75) and a point at the line separating
regions 2 and 3 (tp = 1). We include in the table the estimated values for the ground-state
energy per particle in the bulk limit e∞ (we set h = 0 in (1)), the sound velocity vs and the
magnetic field h that fixes the ground state at density ρ = 1/2.

The value of the exponent x+1,0 = x−1,0 = xp for tp = 0.75 and tp = 1 is known from the
solutions of (19), (21) and (26), i.e. xp = 0.167 70 (tp = 0.75) and xp = 0.1666 (tp = 1). The
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Figure 6. Lowest eigenenergy E(p) with momentum p, as a function of tp for the Hamiltonian (1)
at density ρ = 1/2 and lattice sizes L = 10 (left) and L = 16 (right). We set h = 0 in the figure.
The energies E(p) are the lowest eigenenergies with momentum p. The eigenlevels with p �= 0, π

are doubled degenerated (momenta p and −p). The kinks on the curves are due to a level crossing
among the two lowest eigenenergies with the same momentum.

comparison of these last results with the first two lines of table 2 indicates that the errors are in
the last digit. Like regions 1 and 2, region 3 is also massless with a conformal central charge
c = 1. The dimensions x+1,0 and x−1,0 in table 2 are associated with the sectors with densities
ρ = 1

2 + 1
L

and ρ = 1
2 − 1

L
, respectively. These dimensions in a standard Coulomb gas phase,

like in regions 1 and 2, are equal and correspond to the dimensions x±1,0 in (24). We also
show in table 2 the dimension x0,1 related to the first gap with zero (mod. π ) momentum in
the sector containing the ground state. The dimensions x±1,0, as shown in the table, is close to
1/4x0,1, in agreement with (24). The dimensions in the first two lines of table 2 (tp = 0.75 and
tp = 1) although close are not equal, as we can also check in figure 4. Table 2 also indicates
that inside region 3 the conformal dimensions almost do not change as we change tp. Since
our results are valid only for the density ρ = 1/2 we do not know if this small (or no) variation
remains valid for other points inside region 3.

Once in region 3 of figure 1 by increasing the value of tp, for a fixed density, we reach
region 4. In this region several eigenlevels’ crossings occur in the finite lattice. In figure 6 we
show for L = 10 (left) and L = 16 (right) these crossings. The crossings among eigenlevels
with distinct momenta are visualized directly in the figure. The kinks in the curves are due to
the level crossings with the same momentum.

As we cross from region 3 to region 4, the ground-state energy shows a discontinuity on
its derivative due to a change of its relative position with an excited eigenstate. Unfortunately
also in this region, due to numerical instabilities, it is quite difficult to solve directly the
BAE (8). The direct diagonalization of the quantum chain, except at the density ρ = 1/2, can
only be done for quite few lattice sizes. Our estimate of the line separating regions 3 and 4,
shown in figure 1, is then just schematic. This indicates a first-order phase transition along the
line separating these regions.

Inside region 4 and for ρ = 1/2, we verify that the leading finite-size correction of the
ground-state energy is not O(1/L2) as expected in a massless conformaly invariant phase (see
(11)). This is illustrated in figure 7 where we show for some values of tp the ground-state
energy as a function of 1/L2 for the density ρ = 1/2. We see in this figure the distinct behavior
for the points belonging to regions 2 and 3 as compared with those of region 4 (lower two
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Figure 7. Ground-state energy per particle as a function of L−2 for the Hamiltonian (1) with
h = 0 at density ρ = 1/2. The lattice sizes are L = 6, 8, . . . , 24. The curves correspond to
tp = 0.25, 0.5 (region 1), tp = 0.75, 1.00 (region 2), tp = 1.25 (region 3) and tp = 1.85, 1.95
(region 4).

curves). The oscillatory behavior in figure 7 for the points inside region 4 is a consequence of
the level crossings occurring inside this region. As we can see in figure 6 for tp ∼ 1.65 many
crossings occur with the crossing position dependent of the lattice size. As we change tp inside
this region, for a given finite lattice L, the momentum of the ground state also changes. For
example for tp ≈ 2.25 (see figure 6) the ground state for the quantum chains with L = 10 and
L = 16 has a nonzero momentum and is doubled degenerated. The oscillatory behavior shown
in figure 7 turns out the finite-size scaling analysis quite imprecise. Although not conclusive
these oscillatory behavior in energy and momentum indicates that we have in region 4 effects
of incommensurability of the density distributions, similar to that occurring in other models
[19].

In region 5, as in region 3, it is difficult to solve numerically the BAE due to the occurrence
of complex roots mixed with the real ones. In this case our analysis was restricted to small
lattice sizes (L � 24). Since we should consider a sequence of lattices with fixed density
and on this region ρ > 1/2, the number of data we can have on a given finite-size sequence
is quite small. However, for a given lattice size and density, as we change tp we did not see
the crossings of eigenlevels observed in region 4 (see figure 6). This indicates that region 5,
similarly as regions 1, 2 and 3, is a critical c = 1 Coulomb gas phase. We greatly welcome
more precise and convincing results for regions 4 and 5.

4. Summary and conclusions

We have made a detailed analysis of the spectral properties and phase diagram of one of the
new spin-1 models introduced in [6]. This model is exactly integrable for arbitrary values
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of the parameter tp. Our analysis was restricted to the cases where tp > 0. At tp = 1 we
have shown that the model recovers the deformed SU(3) Perk–Schultz model (or the spin-1
Sutherland model) at the special value of its deformation parameter q = ei2π/3 and external
magnetic field. We verified that at this point the low-lying eigenvalues of the model are the
same as the corresponding ones of the XXZ quantum chain with anisotropy � = 1/2. We
can then interpret the model we studied as an integrable generalization of the deformed SU(3)

Perk–Schultz model or the XXZ quantum chain at anisotropy � = −(q +1/q) with q = ei2π/3.
The BAE, whose solutions give the eigenspectrum of the model, are quite difficult to

solve analytically or numerically for general values of the parameter tp and density of particles
(magnetization). Our results are summarized in figure 1, where we have regions 1–5.

Regions 1, 2, 3 and 5 belong to a critical phase governed by an underlying Coulomb gas
conformal field theory with critical exponents varying continuously. We distinguished these
regions according to the BAE roots of the low-lying eigenenergies of the quantum chain. In
regions 1 and 2 these roots are real. This fact allowed us to solve directly the BAE for quite
large lattices (L ∼ 1000). Exploring conformal invariance we obtain good estimates for the
conformal anomaly and anomalous dimensions of operators of the underlying conformal field
theory. In these two regions we could take the thermodynamic limit and obtain the critical
exponents in terms of integral equations (see (25)–(26)).

In regions 3, 4 and 5 the BAE roots corresponding to the ground state are not real and
very difficult to calculate even for relatively small lattice sites. In these regions our analyses
were based on the direct calculation of the eigenspectra for lattices sizes L � 24.

Our results indicated that regions 3 and 5, although having BAE complex roots in the
ground state, have the same critical behavior as in regions 1 and 2. Actually regions 1, 2, 3
and 5 are quite similar to the XXZ quantum chain in the presence of a magnetic field, with
anomalous dimensions xl,m given by (24), with the value of xp depending on tp and ρ.

As we cross from region 3 to region 4, there is a discontinuity of the ground-state energy.
This is due to a crossing of the two lowest eigenenergies, and we expect that regions 3 and 4
are separated by a first-order phase transition.

Inside region 4 we found an oscillatory behavior for the energy gaps and momentum of the
ground state, as we change the lattice size or the anisotropy parameter tp. These oscillations are
due to a large number of crossing of eigenlevels. These crossings made our finite-size analysis
imprecise. We believe that probably such oscillatory behavior is due to incommensurability
effects on the charge (local magnetization) distribution in the lattice, as occurs in other models
whose incommensurability is established [19].

We conclude mentioning two interesting open problems for the future: the derivation of
the R-matrix associated with this new integrable spin-1 model and the extension of the present
study to the second exactly integrable model introduced in [6]. This second model at tp = 1 is
related to the XXZ quantum chain with anisotropy � = −1/2. This last model has remarkable
properties. It is related to the problem of enumerating alternated sign matrices [20] and the
Hamiltonian with open boundaries is the evolution operator of a conformal invariant stochastic
model, namely the raise and peel model [21]. We then expect that the second model in [6]
with values of tp �= 1 may also have interesting connections with other interesting problems
in physics and combinatorics.
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